ИННОВАЦИИ И ИНВЕСПИЦИИ

А.В. Румянцева, канд. экон. наук, доцент, И.С. Егорова, соискатель, 1 *г. Екатеринбург*

ПОКАЗАТЕЛИ ОЦЕНКИ ИННОВАЦИОННОГО ПОТЕНЦИАЛА СУБЪЕКТОВ ИННОВАЦИОННОЙ ИНФРАСТРУКТУРЫ

В статье рассмотрены существующие подходы к определению «инновационный потенциал», также приведена авторская трактовка данного понятия. Предложена система показателей оценки уровня инновационного потенциала для субъектов инновационной инфраструктуры и дана характеристика каждой группы показателей.

Ключевые слова: инновационный потенциал, субъект инновационной инфраструктуры, инновационная культура, внутренний потенциал, ресурсный потенциал, результативная компонента.

Одним из приоритетных направлений развития национальной экономики России является переход на инновационный путь развития и становление различных субъектов инновационной инфраструктуры (технопарки, бизнес-инкубаторы, центры трансфера технологий и др.). Существенным элементом системы инновационного процесса является инновационный потенциал, отражающий способность к усовершенствованию или обновлению системы и определяющий техническое лидерство.

Для определения рационального уровня инновационного потенциала, который должен иметь эффективно функционирующий субъект инновационной инфраструктуры, а также для получения корректных оценок влияния инновационного потенциала на его развитие, необходимо иметь четкое определение, во-первых, понятия инновационного потенциала, а во-вторых, его состава.

При анализе научной литературы можно сказать, что данная тематика недостаточно проработана. Например, инновационный потенциал некоторыми учеными представлен как:

- «накопленное определенное количество информации о результатах научно-технических работ, изобретений, проектно-конструкторских разработок, образцов новой техники и продукции» [1];
- «система факторов и условий, необходимых для осуществления инновационного процесса» [4];
- «способности различных отраслей народного хозяйства производить наукоемкую продукцию, отвечающую требованиям мирового рынка» [6].

Рассмотренные подходы к данному определению значительно упрощают действительность, а также сужают сферу применения этой категории.

По мнению авторов, инновационный потенциал субъекта инновационной инфраструктуры — это совокупность всей ресурсной, организационной, технической обеспеченности и компетенций, которыми располагает субъект для разработки и освоения нововведений (новшеств) и про-

¹ Румянцева Алена Владимировна – кандидат экономических наук, доцент кафедры экономики природопользования Уральского федерального университета имени первого Президента России Б.Н. Ельцина; e-mail: alenarum@mail.ru.

Егорова Ирина Сергеевна – соискатель, ассистент кафедры государственные и муниципальные финансы Уральского федерального университета имени первого Президента России Б.Н. Ельцина; e-mail: irina_egorova82@mail.ru.

изводства на их основе конкурентоспособной продукции (технологии, услуги) для ее представления на отечественном и зарубежном рынках.

От состояния инновационного потенциала субъектов, генерирующих инновации в России, зависят управленческие решения по выбору и реализации инновационной стратегии, вследствие чего необходима его комплексная оценка. Анализ существующих подходов к оценке инновационного потенциала позволяет выявить три основные компоненты: внутренний потенциал, ресурсный потенциал, результативная компонента [3]. Внутренний потенциал включает продуктовый (проектный), функциональный, ресурсный, организационный, управленческий. Ресурсный потенциал включает в себя материально-технические ресурсы, информационные, финансовые, человеческие и др. Результативная компонента предполагает получение нового инновационного продукта (услуги).

Авторами предлагается следующая система частных и интегральных показателей для оценки инновационного потенциала; оценка интеллектуального потенциала; оценка научно-технического потенциала; оценка задела научно-технических разработок; оценка деловых связей между производством и наукой; оценка влияния внутренних факторов; оценка инновационной активности; уровень инновационной культуры.

Система показателей разработана с учетом следующих методологических принципов:

- 1) ориентации на конечные результаты;
- регулируемой системы частных показателей (экономических, научнотехнических, экологических);
- рационального отношения отдельных групп показателей (стоимостных и натуральных, абсолютных и относительных);
- разграничения показателей эффективности и результативности.

Также учитывались следующие требования при выборе и обосновании показателей для оценки инновационного потенциала:

- логическая связь с целевой функцией;
- научная обоснованность и объективность;
- простота и доступность расчета;
- сходимость показателей по уровням иерархии управления и во времени;
- конкретность и однозначность истолкования полученных результатов.

Оценка уровня инновационного потенциала субъекта инновационной инфраструктуры осуществлена в следующей последовательности:

- обоснование методологических принципов отбора показателей деятельности субъекта инновационной инфраструктуры;
- выбор частных показателей (абсолютных и относительных) по семи составляющим на основе применения аналитико-логических и сравнительных методов;
- выбор отдельных показателей (абсолютных и относительных) для обобщенной оценки инновационного потенциала;
- интегральная оценка уровня инновационного потенциала.

Характеристика каждой группы показателей позволяет обосновать их значимость, подробно рассмотреть специфику предлагаемых показателей.

1. Оценка интеллектуального потенциала характеризует обеспеченность инновационного процесса человеческими ресурсами, квалификационную и возрастную структуру персонала, задействованного в создании и распространении инноваций. Интеллектуальный потенциал рассматривают как меру эффективности инновационной экономики, выражающуюся в ее способности к реализации интеллектуальных возможностей человека и общества в целях социально-экономического развития.

- 2. Оценка научно-технического потенциала включает применяемые технологии и их тип; состояние основных производственных фондов; технологическое обслуживание; компьютерные системы; оборудование и материалы; систему качества и т. д.
- 3. Оценка задела научно-технических разработок предполагает совокупность научных результатов, полученных в процессе изучения свойств материи, процессов, явлений, законов природы и общества, теоретического обоснования и экспериментальной проверки путей совершенствования чеголибо, которые в перспективе могут обеспечить создание новых методов, способов, технологий, материалов, веществ, элементной базы и т. п. для решения новых задач.

Инновационный потенциал субъекта должен обеспечивать не только разработку новшеств, но и их внедрение в сферу практической реализации. Известно, что лишь 10–30 % идей могут стать изобретениями, и только 0,5–3,5 % изобретений способны окупить себя. Чем большее число научно-технических разработок относительно их общего числа находят практическое применение, тем эффективнее используется инновационный потенциал субъекта. Таким образом, результативность освоения новшеств оценивается соотношением числа внедренных и общего числа разработанных новшеств.

- 4. Оценка деловых связей между производством и наукой показывает поддержку научных разработок государственным финансированием, отражает объемы реализованных и коммерциализованных НИР и НИОКР. В рамках осуществления своей деятельности субъекты инновационной инфраструктуры должен стремиться к увеличению каждого частного показателя из этой группы.
- **5.** Оценка влияния внутренних факторов включает следующие группы показателей:
- 1. Инновационные возможности в области коммуникации и компьютерными

- системами участвующих в НИОКР это объем работ в приведенных единицах измерения затрат труда (нормо-часы), который может быть выполнен в течение некоторого периода времени (например, года) основным производственным и научным персоналом на базе имеющихся фондов.
- 2. Система защиты информации. Под безопасностью информации понимается состояние информации, информационных ресурсов и информационных систем, при которой с требуемой вероятностью обеспечивается защита информации от утечки, хищения, утраты, несанкционированного уничтожения, искажения, модификации (подделки), копирования, блокирования и т. п.

В области защиты информации существует Государственный стандарт РФ ГОСТ Р ИСО/МЭК 15408-2-2002 «Информационная технология. Методы и средства обеспечения безопасности. Критерии оценки безопасности информационных технологий».

- 3. Оценка финансового потенциала начинается с определения инженерно-конструкторских возможностей и расчета затрат.
 - Инженерно-конструкторские затраты (З_{ниокр}) включают в себя: выполнение НИОКР (собственными силами и/или с привлечением сторонних организаций); покупка технической документации (ноухау) или лицензий на использование результатов исследования и разработок; затраты на лицензирование (сертификацию) новой продукции (услуг); приобретение нового оборудования, материалов, комплектующих и полуфабрикатов; переподготовка (переобучение) производственного персонала.
 - Производственные затраты (3_n):
 освоение использования нового
 оборудования, материалов, комплектующих и полуфабрикатов; выпуск новой (модернизированной)
 продукции.

 Маркетинговые затраты (3_м): идентификация рыночных возможностей (для новых продуктов и услуг); тестирование новых продуктов (услуг); подготовка каналов сбыта; рекламная деятельность; подготовка (переобучение) персонала по сбыту.

6. Оценка инновационной активности.

Инновационная активность – это многокомпонентная стратегическая характеристика организации, связывающая используемые компанией количественные и качественные ресурсы с результатами ее инновационной деятельности, а также определяющая степень самостоятельного участия предприятия в инновационном процессе [5]. Оценка инновационной активности осуществляется по значениям ресурсной и результатной компоненты.

7. Оценка уровня инновационной культуры определяет готовность предприятия, персонала, руководящего звена воспринимать полученные новшества, переводить их в нововведения, учитывать неудачи и адаптироваться к изменениям окружающей среды. Исследования показывают, что каждая шестая инновационная разработка не реализуется из-за низкой степени восприимчивости к нововведениям.

Группы показателей оценки уровня инновационного потенциала по каждой составляющей приведены в табл. 1.

Таблица 1 Показатели оценки уровня инновационного потенциала

Наименование показателя	Формула	Обозначения	Рекомен- дуемое оп- тимальное значение показателя
1	2	3	4
	1.Оценка интеллектуалы	ного потенциала	
Доля персонала, задействованного в инновационных проектах	$d_{q_{MII}} = \frac{q_{MI}}{q_{II}} 100\%$	I_{HH}^{-} общая численность персонала, задействованного в инновационных проектах, чел.; I_{HH}^{-} — среднесписочная численность персонала по субъекту инновационной инфраструктуры, чел.	50–60 %
Доля научно-техниче- ских специалистов, за- действованных в инно- вационных проектах	$d_{_{^{\prime}HTC}} = \frac{Y_{_{HTC}}}{Y_{_{MII}}} 100\%$	${\it Y_{HTC}}$ — численность на- учно-технических специ- алистов (разработчиков), чел.	80–95 %
Удельный вес научнотехнических специалистов старше 50 лет, занимающихся инновационными разработками	$d_B = \frac{B}{V_{HTC}} 100\%$	B — численность научнотехнических специалистов старше 50 лет, чел.	<i>d_B</i> < 50 %

Продолжение табл. 1

1	2	3	4
Уровень квалификации используемого труда	$KB_{HTC} = \frac{Y_{HTC}^{V}}{Y_{HTC}} 100\%$	Y_{HTC}^{y} — численность на- учно-технических специ- алистов, имеющих уче- ную степень, звание, чел.	$KB_{HTC} \ge 70 \%$
Уровень интеллекту- ального потенциала	$U\Pi = 0.25 \cdot d_{q_{un}} + 0.25 \cdot a$	$d_{q_{nmc}} + 0.25 \cdot d_{_{\theta}} + 0.25 \cdot KB_{HTC}$	ИП > 50%
	2. Оценка научно-техниче	ского потенциала	
Коэффициент прогрессивности оборудования	$K_{np} = \frac{EC_{IIO}}{EC_{O\Phi}}$	EC_{IIO} — балансовая сто- имость прогрессивного оборудования на конец анализируемого периода, руб.; $EC_{O\Phi}$ — балансовая стои- мость всего оборудова- ния на конец анализируе- мого периода, руб.	0,5–1
Коэффициент модернизации оборудования	$K_{MO} = \frac{EC_{MO}}{EC_{O\Phi}}$	<i>БС_{мо}</i> – балансовая стоимость модернизированного оборудования, руб.	0,5–1
Удельный вес оборудования со сроком эксплуатации до 10 лет	$V_{OB_{10}} = \frac{K_{OB_{10}}}{K_{OB_{\Sigma}}}$	$K_{OB_{10}}$ – количество единиц оборудования со сроком эксплуатации до 10 лет, шт.; $K_{OB_{\Sigma}}$ – общее количество едийц оборудования, шт.	0,5–1
Коэффициент износа	$K_{umoca} = \frac{II}{\Pi C_{O\phi}}$	M — накопленная сумма износа, руб.; $\Pi C_{\phi\phi}$ — первоначальная балансовая стоимость основных фондов, руб.	0-0,5
Уровень научно-тех- нического потенциала	$HT\Pi = 0,25 \cdot K_{np} + 0,25 \cdot K_{MC}$	$V_{OE10} + 0.25 \cdot V_{OE10} + 0.25 \langle K_{ushoca} \rangle$	0,7-0,8
3	. Оценка задела научно-техн	нических разработок	
Средняя продолжительность разработки одного новшества	$B_{coso} = \frac{\sum_{i=1}^{N} \Pi_{i}}{N}$	N — общее число созданных в результате проведения собственных НИОКР новшеств за рассматриваемый период; Π — время, затраченное на создание i -го новшества	B_{coso} \rightarrow min
Результативность освоения (внедрения) новшеств	$P_{BH} = rac{\displaystyle\sum_{i=1}^{N} K_{t}^{ ext{\tiny 6NeOp.no6}}}{\displaystyle\sum_{t=1}^{T} K_{t}^{ ext{\tiny pasp.no6}}}$	$K_t^{\text{разр.нов}}$, $K_t^{\text{внсдр.нов}}$ — число внедренных и разработанных новшеств за t — год	0,6–1

Продолжение табл. 1

1	2	3	4
Средняя продолжительность освоения одного новшества	$B_{oc} = \frac{\sum_{i=1}^{N} B_i}{N}$	B_i — время, потраченное на внедрение i -го новшества (изобретения, технического решения, идеи)	$B_{oc} \rightarrow \min$
Удельный вес инновационной продукции в общем объеме производства	$d_{HII/oar{o}u_{\!\!\!\!/}}=rac{\mathcal{Q}_{HII}}{\mathcal{Q}_{oar{o}u_{\!\!\!/}}}$	$Q_{\it MII}$ – объем выпуска инновационной продукции, руб. $Q_{\it oбщ}$ – общий объем производства, руб.	0,6–1
4. Ou	енка деловых связей между	производством и наукой	
Объемы государственного и (или) муниципального финансирования в программах (проектах), договорах-заказах и др. источниках финансовых ресурсов	$CF = \sum F_i$	CF — общие финансовые потоки с субъекте инновационной инфраструктуры, руб.; F_i — объем финансирования за счет бюджетов бюджетной системы $P\Phi$, руб.	<i>CF</i> > 1 % ВВП
Объем научных разра- боток реализованных в производстве	$Q_{HHP} = \sum_{i}^{i} HHP_{i}^{peax} \cdot \mathcal{U}_{HHP_{i}}$	$HMP_i^{\text{реал}}$ — объем научных разработок реализованных в производстве, шт. $II_{\text{НИР}}$ — цена i -НИР, реализованной в производстве, руб.	$Q_{HHP} \rightarrow \max$
Объемы НИОКР, коммерциализованных в виде инновационной продукции (услуг)	$Q_{HHOKP}^{K} = \Sigma HHOKP_{i}^{K} \cdot \mathcal{U}_{HHOKP_{i}}$	НИОКР $_i^{\kappa}$ — коммерциализованные НИОКР, шт. $\mathcal{L}_{\text{НИОКР}i}$ — цена i -коммерциализованного НИОКР, руб.	$Q_{\text{HUOKP}} \xrightarrow{\kappa} \text{max}$
	5. Оценка влияния внутр	енних факторов	
Потенциальная годовая производственная мощность	$\Pi\Pi = Q_{1u} \cdot \Phi_t \cdot n_i$	$Q_{1\text{ч}}$ – количество продукции, изготавливаемой на оборудовании i -ой группы за 1 час, шт./час. $\Phi_{_{i}}$ — годовой эффективный фонд времени i -й группы оборудования, при соответствующем режиме работы, час. n — количество оборудования в i -ой группе, ед. i — группа оборудования	ΠΠ → max
Потенциальный годовой валовой объем выпускаемой инновационной продукции	$Q_{HHOKP} = \sum N_i$	N — валовый объем инновационной продукции i -го вида, руб. i — вид инновационной продукции	$Q_{HHOKP} \rightarrow \max$

Вестник УрФУ. Серия экономика и управление. № 1/2013

Окончание табл. 1

1	2	3	4		
Оценка финансового потенциала	$3_{OBIII} = 3_{HHOKP} + 3_{II} + 3_{M}$	$3_{\rm HИОКР}$ — инженерно-конструкторские затраты, руб.; $3_{\rm II}$ — производственные затраты, руб. $3_{\rm II}$ — маркетинговые затраты, руб.	3 _{общ} →min		
	6. Оценка инновационной активности				
Доля суммарных затрат на НИОКР и приобретение технологий в суммарных затратах на производство	$d_{HHOKP/oбщ} = \frac{3_{HHOKP}}{3_{oбщ}}$	$3_{ m HUOKP}$ — инженерно-конструкторские затраты, руб.; $3_{ m obm}$ — суммарные затраты на производство	0,5–1		
Оценка патентной активности [7]	$\vartheta_{\Pi A} = \left(\frac{Q_{\Pi I}}{Q_{M I}} - \frac{Q_{\Pi_0}}{Q_{M_0}}\right) \cdot 100\%$	Q_{nl}, Q_{n0} — количество полученных патентов за период нахождения в бизнес-инкубаторе (технопарке) и до этого момента; Q_{nl}, Q_{n0} — количество изобретений за период нахождения в бизнес-инкубаторе (технопарке) и до этого момента	Э _{па} > 20 %		
Уровень инновацион- ной активности	$Y_{DC} = 0.5 \cdot d_{HMOKP/o\delta u_l} + 0,$	5· Э _{пл}	$Y_{\rm JC} > 0.5$		
7. Оценка уровня инновационной культуры					
Индекс инновационной культуры [2]	$I_{HK} = \frac{\sum M_{EMP}}{\sum M_{IDEAL}}$ $M_{EMP} = B_i \cdot V_i$ $M_{IDEAL} = B_i \cdot V_{ideal}$	$M_{\it EMP}$ — эмпирическая оценка; $M_{\it IDEAL}$ — идеальная оценка; V_i — важность фактора; B_i — балл $V_{\it ideal}$ — максимально возможный балл	$I_{\rm MK} > 0.5$		
Интегральный показател	ь инновационного потенциа.	<u> </u>			
Уровень инновационного потенциала субъекта инновационной инфраструктуры	$V_{HII} = 0.25 \cdot HII + 0.25 \cdot HI$		Высокий $Y_{\text{ип}} > 0.8$ средний — $0.65 - 0.8$ низкий $Y_{\text{ип}} < 0.65$		

Алгоритм оценки интегрального показателя включает в себя:

- 1) выявление возможностей использования частных и обобщенных показателей в различных комбинациях для определения интегрального;
- 2) определение весомости составляющих частных и обобщенных показателей (в данной работе принимается равная важность выбранных факторов);
- определение модели интегрального показателя уровня инновационного потенциала.

Интегральные показатели для оценки уровня инновационного потенциала будут уточнены и апробированы в рамках диссертационного исследования на конкретных субъектах инновационной инфраструктуры.

В рамках проведенной авторами работы предлагается понятие «инновационный потенциал субъекта инновационной инфра-

структуры», выделены структурные элементы инновационного потенциала и предложены экономико-математические модели для их оценки. Важность оценки инновационного потенциала субъектов инновационной инфраструктуры предопределяет не только дальнейшее их развитие, но и характеризует степень их готовности к созданию, освоению и распространению разного типа нововведений, к реализации результатов инновационной деятельности.

Исходя из приоритетных направлений инновационной политики, проводимой органами власти, предлагаемый авторами подход к оценке уровня инновационного потенциала позволит получить всестороннюю оценку возможностей субъектов инновационной инфраструктуры не только за счет научного и научно-технического потенциала, но и за счет определения уровня восприимчивости инноваций.

Список использованных источников

- Данько М. Инновационный потенциал в промышленности Украины // Экономист. 1999. № 10.
- Ларичева Е.А. Развитие инновационной культуры на предприятии // Вестник Брянского государственного технического университета. 2009. № 2.
- Матвейкин В.Г., Дворецкий С.И., Минько Л.В., Таров В.П., Чайникова Л.Н, Летунова О.И. Инновационный потенциал: современное состояние и перспективы развития: монография. М.: Машиностроение-1, 2007.
- Нечепуренко М.Н. Организационноэкономический механизм управления устойчивым развитием предприятия на основе инновационной активности: автореф. дис. . . . канд. экон. наук. Москва, 2006. 19 с.

- 5. Реутов А.Ю. Практическая интерпретация количественной оценки инновационной активности организации [Электронный ресурс]. Режим доступа: http://sun.tsu.ru/mminfo/000063105/352/image/352–160.pdf.
- Рощин В.И. Экономическая устойчивость предприятий и реализация их экономических интересов: автореф. дис. ... канд. экон. наук. Чебоксары: 2000. 19 с.
- Румянцева А.В., Егорова И.С. Система показателей для оценки эффективности функционирования субъектов инновационной системы России // Вестник УрФУ. Серия «Экономика и управление». 2012. № 1.